Adaptive Semi-Supervised Learning with Discriminative Least Squares Regression

نویسندگان

  • Minnan Luo
  • Lingling Zhang
  • Feiping Nie
  • Xiaojun Chang
  • Buyue Qian
  • Qinghua Zheng
چکیده

Semi-supervised learning plays a significant role in multi-class classification, where a small number of labeled data are more deterministic while substantial unlabeled data might cause large uncertainties and potential threats. In this paper, we distinguish the label fitting of labeled and unlabeled training data through a probabilistic vector with an adaptive parameter, which always ensures the significant importance of labeled data and characterizes the contribution of unlabeled instance according to its uncertainty. Instead of using traditional least squares regression (LSR) for classification, we develop a new discriminative LSR by equipping each label with an adjustment vector. This strategy avoids incorrect penalization on samples that are far away from the boundary and simultaneously facilitates multi-class classification by enlarging the geometrical distance of instances belonging to different classes. An efficient alternative algorithm is exploited to solve the proposed model with closed form solution for each updating rule. We also analyze the convergence and complexity of the proposed algorithm theoretically. Experimental results on several benchmark datasets demonstrate the effectiveness and superiority of the proposed model for multi-class classification tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Thesis: Learning Structured Classifiers for Statistical Dependency Parsing Learning Structured Classifiers for Statistical Dependency Parsing

In this thesis, I present three supervised and one semi-supervised machine learning approach for improving statistical natural language dependency parsing. I first introduce a generative approach that uses a strictly lexicalised parsing model where all the parameters are based on words, without using any part-of-speech (POS) tags or grammatical categories. Then I present an improved large margi...

متن کامل

Semi-Supervised Convex Training for Dependency Parsing

We present a novel semi-supervised training algorithm for learning dependency parsers. By combining a supervised large margin loss with an unsupervised least squares loss, a discriminative, convex, semi-supervised learning algorithm can be obtained that is applicable to large-scale problems. To demonstrate the benefits of this approach, we apply the technique to learning dependency parsers from...

متن کامل

Ensemble learning with trees and rules: Supervised, semi-supervised, unsupervised

In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised, semi-supervised and unsupervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by post processing the rules with partial least squares regression have significantly better prediction performance than ...

متن کامل

Implicitly Constrained Semi-supervised Least Squares Classification

We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the o...

متن کامل

Semi-Supervised Least-Squares Conditional Density Estimation

---Conditional density estimation is an useful alternative to regression to learn an input-output relationship under multi-modality, asymmetry, and heteroscedasticity. The supervised learning method called least-squares conditional density estimation (LSCDE) is the state-of-the-art method that directly estimates the conditional density using a linear model. In this paper, we extend the supervis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017